

	
3GPP TSG-SA3 Meeting #101-e 	S3-203314
e-meeting, 9th - 20th November 2020												
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	33.310
	CR
	0116
	rev
	[bookmark: _GoBack]-
	Current version:
	16.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Aligning TLS in 33.310 with the current 3GPP TLS profile

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	CryptPr
	
	Date:
	2020-10-30

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	- The example use of a floppy disk in clause 5.2.1 makes the specification feel outdated.

- TLS 1.3 is mandatory to support by the 3GPP TLS profile and clause 5.2.2.2 even directly references TLS 1.3. The message flow is however not fully compatible with TLS 1.3 and contains some additional errors:
· ServerHelloDone, ServerKeyExchange, and ClientKeyExchange messages are deprecated in TLS 1.3
· In TLS 1.3, the server sends Finished together with the ServerHello
· TLSb uses TLSa public key even if no Certificate message was requested
· A TLS client is forced to send a CertificateVerify message if it sends a Certificate message.

- The example in Annex B.5.2 with the forbidden to support RSA-1024 running on Pentium III makes the specification feel outdated.

	
	

	Summary of change:
	- Floppy disk is removed and replaced with flash drive and HTTPS.
- Errors in the TLS cases are corrected and the text is made compatible with TLS 1.3
- The Pentium III and RSA-1024 example is removed and replaced with text stating that memory and processing power requirement are not an issue.

	
	

	Consequences if not approved:
	Risk for non-compatible implementations when the mandatory to support TLS 1.3 is used in 33.310

	
	

	Clauses affected:
	5.2.1, 5.2.2.2, Annex B.5.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

*** BEGIN CHANGES ***
[bookmark: _Toc532211161][bookmark: _Toc44943871]5.2.1	Operator Registration: Creation of interconnect agreement
SEGs or TLS entities of two different security domains need to establish a secure connection, when the operators make an interconnect agreement. The first technical step in creating the interconnect agreement between domains is the creation of cross-certificates by the Interconnection CAs of the two domains.
Inter-operator cross-certification can be done using different protocols, but the certification authority shall support the PKCS#10 method for certificate requests as specified in RFC 2986 [2]. The SEG CA, TLS client CA and TLS server CA create a PKCS#10 certificate request, and send it to the other operator's Interconnection CA. The method for transferring the PKCS#10 request is not specified, but the transfer method shall be secure. The PKCS#10 can be transferred e.g. HTTPS, in a flash drivefloppy disk, or be send in a signed email. The PKCS#10 request contains the public key of the authority and the name of the authority requesting the cross-certificate. When the Interconnection CA accepts the request, a new cross-certificate is created for the requesting CA. The Interconnection CA shall make the new cross-certificate available to SEGs and TLS entities in its own domain that need to use it. Cross-certificates on the other domain's SEG CA's are stored in a local CR (Certificate Repository) which all SEGs that need to communicate with the other domains shall access using LDAP as specified in RFC 2252 [5]. Cross-certificates on TLS client CAs and TLS server CAs are made available to TLS entities, e.g. by storing them in a file of trusted CAs on the TLS entity, or by storing them in a local CR (Certificate Repository) which all TLS entities that need to communicate with the other domain shall access e.g. using LDAP as specified in RFC 2252 [5].
The cross-certification is a manual operation, and thus PKCS#10 is a suitable solution for the interconnect agreement.
Creation of an interconnect agreement only involves use of the private keys of the Interconnection CAs. There is no need for the operators to use the private keys of their respective SEG CAs, TLS client CAs or TLS server CAs in forming an interconnect agreement.
When creating the new cross-certificate, the Interconnection CA should use basic constraint extension (according to section 4.2.1.9 of RFC 5280 [14]) and set the path length to zero. This inhibits the new cross-certificate to be used in signing new CA certificates. The validity of the certificate should be set sufficiently long. The cross-certification process needs to be done again when the validity of the cross-certificate is ending.
When the new cross-certificate is available to the SEG, all that needs to be configured in the SEG is the DNS name or IP address of the peering SEG gateway. The authentication can be done based on the created cross-certificates.
When the new cross-certificate is available to a TLS entity, it allows that TLS entity to authenticate TLS entities in the peering network. Authentication is done based on the created cross-certificates.
The certificate hierarchy in the case of two peering operators is illustrated in Figure 3.

Figure 3: Certificate Hierarchy

*** NEXT CHANGE ***
[bookmark: _Toc532211166][bookmark: _Toc44943876]5.2.2.2	TLS case
After establishing a interconnect agreement and finishing the required preliminary certificate management operations as specified in clause 5.2.1, the operators configure their TLS entities for secure interconnection. The exact process for establishing the TLS connections is dependent on the application protocol and is outside the scope of this specification. However, the general flow is described in the remainder of this clause.
The local Interconnection CA and TLS client/server CAs are configured as trusted CAs in the TLS entity typically by storing them in a file of trusted CAs on the TLS entity. The cross-certificates on the TLS client/server CAs of the remote operator are also made available to the TLS entity, e.g. by storing them in a file of trusted CAs on the TLS entity, or by storing them in a local CR (Certificate Repository) which all TLS entities that need to communicate with the other domain shall access e.g. using LDAP. Because of the cross-certification, any operator whose TLS client CA or TLS server CA has been cross-certified by another operator can establish TLS connections with that other operator.
The following is the connection establishment from the point of view of a TLS client in Operator A (TLSa) and a TLS server in Operator B (TLSb). The case where the TLS client is in Operator B and the TLS server is in Operator A is treated in a similar fashion. The flow is based on the TLS handshake protocol as described in RFC 8446 [49]. In case of any failure in following steps, TLSa or TLSb will treat this as an error and abort the procedure.
-	During connection initiation, the TLSa sends a ClientHello message to TLSb. TLSb responds with a ServerHello message followed by a ServerCertificate message, a ServerKeyExchange message, an optional CertificateRequest message and a ServerHelloDone message, and other additional messages depending on the TLS version and options. The ServerCertificate message will contain TLSb's certificate (or certificate chain)that was issued by Operator B's TLS server CA. The CertificateRequest message is sent if TLSb wants to authenticate TLSa using certificates in TLS, TLSa may otherwise be authenticated at a later stage using the application layer.
-	TLSa receives the messages from TLSb
-	TLSa verifies the received TLS messages ServerKeyExchange message using TLSb's public key
-	TLSa checks the validity of TLSb's certificate by a CRL check to Operator B’s CRL databases. If a TLS peer cannot successfully perform the CRL check, it shall treat this as an error and abort the TLS handshake
-	TLSa verifies TLSb's certificate using the cross-certificate for Operator B's TLS server CA by executing the following actions:
-	TLSa fetches the cross-certificate for Operator B's TLS server CA from Operator A's Certificate Repository, from a local cache of the Certificate Repository on TLSa, or from a local certificate store on TLSa if a separate Certificate Repository is not used.
-	TLSa checks the validity of the cross-certificate for Operator B's TLS server CA by a CRL check to Operator A's Interconnection CA CRL database. If a TLS peer cannot successfully perform the CRL check, it shall treat this as an error and abort the TLS handshake;
-	TLSa verifies the cross-certificate for Operator B's TLS server CA using Operator A's Interconnection CA's certificate if the Interconnection CA is not a top-level CA, otherwise the Interconnection CA's public key is implicitly trusted.
- TLSa verifies TLSb’s certificate using the cross-certificate for Operator B’s TLS server CA.
-	If TLSb requested a certificate using the CertificateRequest message, then TLSa responds with a Certificate message followed by a ClientKeyExchange message, a CertificateVerify message and a Finished message. The Certificate and CertificateVerify messages are is only sent if the Server requests a certificate. If present, the Certificate message will contain TLSa's certificate (or certificate chain) that was issued by Operator A's TLS client CA. The CertificateVerify message is only sent if TLSa’s certificate has signing capability. It is used to provide explicit verification of a client certificate.
-	TLSb receives the messages from TLSa.
-	If TLSb requested a certificate using the CertificateRequest message, then TLSb verifies the ClientKeyExchange and optional CertificateVerify message using TLSa’s public key.
-	If TLSb requested a certificate using the CertificateRequest message, then TLSb checks the validity of TLSa's certificate by a CRL check to Operator A's CRL databases. If a TLS entity cannot successfully perform both CRL checks, it shall treat this as an error and abort the TLS handshake.
-	If TLSb requested a certificate using the CertificateRequest message, then TLSb validates TLSa's certificate using the cross-certificate for Operator A's TLS client CA by executing the following actions:
-	TLSb fetches the cross-certificate for Operator A's TLS client CA from Operator B's Certificate Repository, from a local cache of the Certificate Repository on TLSb, or from a local certificate store on TLSb if a separate Certificate Repository is not used.
-	TLSb checks the validity of the cross-certificate for Operator A's TLS client CA by a CRL check to Operator B's Interconnection CA CRL database. If a TLS entity cannot successfully perform the CRL check, it shall treat this as an error and abort the TLS handshake
-	TLSb verifies the cross-certificate for Operator A's TLS client CA using Operator B's Interconnection CA's certificate if the Interconnection CA is not a top-level CA, otherwise the Interconnection CA's public key is implicitly trusted.
- TLSb verifies TLSa’s certificate using the cross-certificate for Operator A’s TLS client CA.
-	TLSb sends a Finished message to complete the handshake.
-	TLSa receives the Finished message to complete the handshake.
When both Finished messages has been sent,If the handshake is successfully completed then the secure communications can take place over the TLS connection.

*** NEXT CHANGE ***
[bookmark: _Toc532211264][bookmark: _Toc44943978]B.5.2	Memory and processing power requirements
In case of direct cross-certification, each operator shall store the certificates issued for the other operators locally. They could be stored in the SEG devices, or then in a common repository.
Memory and processing power requirement are not an issue.
If an operator makes roaming agreements with 500 other operators, this would require roughly 1000 kilobytes of memory, if the operator signs the certificates herself, and one certificate takes 1 kilobyte of memory. This should be quite feasible taken into account the high-end nature of SEG hardware.
Processing power benchmark for validating certificates:
-	Hardware: 800 MHz Pentium III, 256 MB of memory.
-	200 x 1024-bit RSA certificates, 1 Root CA (operator's own CA), 200 Sub CAs (other operator CAs) and 200 end entity (SEG) certificates. Also CRLs were verified. Both certificates and CRLs were loaded from disk during the test. The whole test took 3.5 seconds, with probably disk I/O taking most of the time.
In this test 200 certificate chains were validated up to the trusted root.

*** END OF CHANGES ***

image1.wmf

Issues certificate to

Interconnection CA

TLS client

CA

TLS server

CA

SEG

 CA

SEGs

TLS

servers

TLS

clients

Operator A

Interconnection CA

TLS client

CA

TLS server

CA

SEG

 CA

SEGs

TLS

servers

TLS

clients

Operator B

oleObject1.bin

Operator B

TLS clients

TLS servers

SEGs

SEG

 CA

Issues certificate to

TLS server CA

TLS client CA

Interconnection CA

Operator A

TLS clients

TLS servers

SEGs

SEG

 CA

TLS server CA

TLS client CA

Interconnection CA

